Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models

نویسندگان

  • André F. T. Martins
  • Manuele Bicego
  • Vittorio Murino
  • Pedro M. Q. Aguiar
  • Mário A. T. Figueiredo
چکیده

Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial data (e.g., support vector machines) are learned discriminatively. A generative embedding is a mapping from the object space into a fixed dimensional feature space, induced by a generative model which is usually learned from data. The fixed dimensionality of these feature spaces permits the use of state of the art discriminative machines based on vectorial representations, thus bringing together the best of the discriminative and generative paradigms. Using a generative embedding involves two steps: (i) defining and learning the generative model used to build the embedding; (ii) discriminatively learning a (maybe kernel) classifier on the adopted feature space. The literature on generative embeddings is essentially focused on step (i), usually adopting some standard off-the-shelf tool (e.g., an SVM with a linear or RBF kernel) for step (ii). In this paper, we follow a different route, by combining several Hidden Markov Models-based generative embeddings (including the classical Fisher score) with the recently proposed non-extensive information theoretic kernels. We test this methodology on a 2D shape recognition task, showing that the proposed method is competitive with the state-of-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering-Based Construction of Hidden Markov Models for Generative Kernels

Generative kernels represent theoretically grounded tools able to increase the capabilities of generative classification through a discriminative setting. Fisher Kernel is the first and mostly-used representative, which lies on a widely investigated mathematical background. The manufacture of a generative kernel flows down through a two-step serial pipeline. In the first, “generative” step, a g...

متن کامل

Generative and Latent Mean Map Kernels

We introduce two kernels that extend the mean map, which embeds probability measures in Hilbert spaces. The generative mean map kernel (GMMK) is a smooth similarity measure between probabilistic models. The latent mean map kernel (LMMK) generalizes the non-iid formulation of Hilbert space embeddings of empirical distributions in order to incorporate latent variable models. When comparing certai...

متن کامل

Fisher Kernels for Logical Sequences

One approach to improve the accuracy of classifications based on generative models is to combine them with successful discriminative algorithms. Fisher kernels were developed to combine generative models with a currently very popular class of learning algorithms, kernel methods. Empirically, the combination of hidden Markov models with support vector machines has shown promising results. So far...

متن کامل

Combining information theoretic kernels with generative embeddings for classification

Classical approaches to learn classifiers for structured objects (e.g., images, sequences) use generative models in a standard Bayesian framework. To exploit the state-of-the-art performance of discriminative learning, while also taking advantage of generative models of the data, generative embeddings have been recently proposed as a way of building hybrid discriminative/generative approaches. ...

متن کامل

Exploiting Generative Models in Discriminative Classiiers

Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct exible decision boundaries and often result in classiication performance superior to that of the model based approaches. An ideal classiier ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010